Choose Dynabeads® Streptavidin for a flexible way to isolate any target from any starting sample – just add your biotinylated molecule.

  • Easy handling – all you need is a tube and a magnet
  • Quick results – rapid binding and isolation in minutes
  • Robust and reproducible technology
  • Gentle and flexible isolation – whatever your target

Each bead is identical to the rest so you can be assured of consistent isolation. Still attractive after all these years; Dynabeads® Streptavidin have been cited in thousands of papers for diverse manual and automated applications; here are some reference examples.

There are four different streptavidin-coated Dynabeads® with differing properties; some are more suited to automation, others for use with a high salt concentration or with small, hydrophobic antigens.

We’ve put together 1 ml of each of these in a trial kit so you can try them out with your application.

Why not try this irresistibly easy technology at an irresistible price?

Dynabeads® Streptavidin Trial Kit contains 1 mL of each:

  • Dynabeads® M-280 Streptavidin
  • Dynabeads® M-270 Streptavidin
  • Dynabeads® MyOne™ Streptavidin C1
  • Dynabeads® MyOne™ Streptavidin T1

Click here to purchase this trial kit and get 4 different Streptavidin beads for the price of a standard kit.

Here are just a few examples of Dynabeads® Streptavidin in use in published papers:

Automated protocols

  • Meng Q. et al. (2001). Automated multiplex assay system for simultaneous detection of hepatitis B virus DNA, hepatitis C virus RNA and human immunodeficiency virus type 1 RNA. J.Clin.Microbiol. 39(8):2937-2945.
  • Pollock GS. et al. (2001). Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus and cerebellum. J. Neurosci.21(11):3923-3931.
  • Miyashiro I. et al. (2001). Molecular strategy for detecting metastatic cancers with use of multiple tumor-specific MAGE-A genes. Clin.Chem. 47(3):505-512.
  • Stevens SJC. et al. (1999). Monitoring of Epstein-Barr virus DNA load in peripheral blood by quantitative competitive PCR. J.Clin.Microbiol. 37:2852-2857.

Single-stranded DNA templates

  • von Wintzingerode F. et al. (2002). Base-specific fragmentation of amplified 16S RNA genes analyzed by mass-spectrometry: A tool for rapid bacterial identification. PNAS.99(10):7039-7044.
  • Pourmand N. et al. (2002). Multiplex pyrosequencing. Nucleic Acids Res. 30(7):e31.
  • Lindblad-Toh K. et al. (2000). Large-scale discovery and genotyping of singlenucleotide polymorphisms in the mouse. Nature Genetics. 24:381-386.
  • Dziembowski A. et al. (2001). Analysis of 3’ and 5’ ends of RNA by solid-phase S1 nuclease mapping. Anal. Biochem. 294:87-89.

Genome analysis

  • Fletcher TM. et al. (2002). Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol. Cel. Biol. 20(17): 6466-6475.
  • Hansen-Hagge TE. et al. (2001). Identification of sample-specific sequences in mammalian cDNA and genomic DNA by the novel ligation mediated subtraction (Limes). Nucl. Acids Res. 29(4):e20.
  • Pradel N. et al. (2002). Genomic subtraction to identify and characterize sequences of Shiga toxin-producing Escherichia coli O91:H21. Appl. Env. Microbiol. 68(5):2316-2325.
  •  Heald R. et al. (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420-425.
  • Beulieu M. et al. (2001). PCR candidate region mismatch scanning:adaption to quantitative, high-throughput genotyping. Nucleic Acids Res. 29(5): 114-1124.

Sequence clean-up

  • Fangan BM. et al. (1999) Automated system for purification of dye terminator sequencing products eliminates up-stream purification of templates. BioTechniques 26:980-983.
  • Bhalerao R. et al. (2003) Gene expression in autumn leaves. Plant Physiol. 131:1-13.

Sequence-specific capture

  •  Mangiapan G. et al. (1996). Sequence capture-PCR improves detection of mycobacterial DNA in clinical specimens. J. Clin. Microbiol. 34(5):1209-1215.
  • Dong SM. et al. (2001). Detection of colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst. 93(11): 858-865.
  • Refseth UH. et al. (1997). Hybridization capture of microsatellites directly from genomic DNA. Electrophoresis. 18(9):1519-1523.
  • Shuber AP. et al. (2002). Accurate, non-invasive detection of Helicobacter pylori DNA from stool samples: Potential usefulness for monitoring treatment. J. Clin. Microbiol. 40(1):262-264.

Gene expression analysis

  • Kornmann B. et al. (2001). Analysis of circadian liver gene expression by ADDER, a highly
  • sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res. 29(11). e51
  • Laveder P. et al. (2002). A two-step strategy for constructing specifically self-subtracted cDNA libraries. Nucleic Acids Res. 30(9): e38
  • Schramm G. et al. (2000).A simple and reliable 5’-RACE approach. Nucl. Acids Res. 28(22):e96
  • Velculescu VE. et al. (1995). Serial analysis of gene expression. Science. 270(5235): 484-487.
  • Brenner S. et al. (2000). In vitro cloning of complex mixtures of DNA on microbeads: Physical separation of differentially expressed cDNAs. PNAS. 97(4): 1665-1670.
  • Sutcliffe JG. et al. (2000). TOGA: An automated parsing technology for analyzing expression of nearly all genes. PNAS. 97(5): 1976-1981.
  • Wang A. et al. (1999). Rapid analysis of gene expression (RAGE) facilitates universal expression profiling. Nucleic Acids Res. 27(23): 4609-4618.

Nucleic acid binding proteins

  • Mehta A et al. (1998). A sequence-specific RNA binding protein complements Apobec-1 to edit apolipo protein B mRNA. Mol. Cel. Biol. 18(8):4426-4432. 
  • Nordhoff E. et al. (1999). Rapid identification of DNA-binding proteins by mass spectrometry. Nat. Biotechnol. 17: 884-888.
  • Brodsky AS. and Silver A. (2002). A microbead based system for identifying and characterizing RNA-protein interactions by flow cytometry. Mol. Cel. Proteomics 1(12):922-929.

Protein purification

  • Girault S. et al. (1996). Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Anal. Chem. 68:2122-2126.
  • O’Reilly FM. et al. (2002). FKBP12 modulation of the binding of the skeletal ryanodine receptor onto the II-III loop of the dihydropyridine receptor. Biophys. J 82:145-155.
  • Chao S-H. and Price DH. (2001). Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol.Chem. 276(34): 31793-31799.
  • deBaar MP. et al. (1999). Detection of human immunodeficiency virus type I nucleocapsid protein p7 in vitro and in vivo. J Clin. Microbiol. 37(1):63-67.

Specific cell isolation

  • Konishi Y. et al. (2002). Isolation of living neurons from human elderly brains using immunomagnetic sorting DNA-liker system. Am. J. Pathol. 161(5):1567-1576.
  • Fahrer AM. et al. (2001). Attributes of ?d intrepithelial lymphocytes as suggested by their transcription profile. PNAS 98(18):10261-10266.
  • Johansen M. et al. (2002). An investigation of methods for enriching trophoblasts from maternal blood. Prenatal Diagnosis 15:921-931.
  • Sun W. et al. (2001). Food-borne pathogens. Use of bioluminescent Salmonella for assessing the efficiency of constructed phagebased biosorbent. J Ind. Microbiol. Biotech. 27:126-128.


  • Nord K. et al. (2001). Recombinant human factor VIII-specific affinity ligands selected from phage-displayed combinatorial libraries of protein A. Eur. J. Biochem. 268:4269-4277.
  • Biroccio A. et al. (2002). Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76(8):3688-3696.
  •  Legendre D. et al. (1999). Engineering a regulatable enzyme for homogenous immunoassays. Nature Biotech. 17:67-72.
  • Lev A. et al. (2002). Isolation and characterization of human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T-cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res. 62(11):3184-3194.
  • Cumbers SJ. et al. (2002). Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotech. 20(11):1129-1134.
  • Demartis S. et al. (1999). A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J. Mol. Biol. 286:617-633.
  •  Pini A. et al. (1998). Design and use of a phage display library. J. Biol. Chem. 273(34):21769-21776.
  • Cox JC. et al. (2002). Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30(20):e108.