Organelle Lights™and Cellular Lights™ targeted fluorescent proteins

what they are
Organelle Lights™ and Cellular Lights™ fluorescent protein–based reagents are targeted to subcellular compartments and organelles by signal sequences. Based on BacMam technology, these versatile tools are prepackaged in baculovirus particles for highly efficient, reproducible, and noncytopathic delivery to a range of cell types, including primary and stem cells. Organelle Lights™ and Cellular Lights™ fluorescent proteins are not overtly toxic, which ensures consistent expression. The efficient transduction makes it easy to deliver multiple constructs and to modulate gene expression. Organelle Lights™ and Cellular Lights™ fluorescent proteins are readily adaptable to a number of assay formats, and compatibility with automated liquid handling makes them ideal for high-content imaging applications. In addition, we now offer a red fluorescent protein (RFP): TagRFP from Evrogen. TagRFP is a novel monomeric red fluorescent protein based on the wild-type RFP from sea anemone Entacmaea quadricolor (Nat Methods (2007) 4:555–557). TagRFP is approximately three times brighter than mCherry protein (Nat Biotechnol (2004) 12:1567–1572), making it the brightest monomeric RFP currently available.

how they work
Golgi-RFP:
This new Organelle Lights™ product is TagRFP fused to a Golgi-targeting tag (a portion of human Golgi-resident enzyme N-acetylgalactosaminyltransferase-2). This is the same tag used in our popular Golgi-GFP.

Nuc-RFP: Our Organelle Lights™ Nuc-RFP comprises TagRFP fused to the SV40 nuclear localization sequence. This allows researchers to visualize the nucleus without using DNA-binding dyes, which may perturb cellular function.

H2B-GFP and -RFP: Another method of localizing the nucleus is via histone labeling. With the Cellular Lights™ H2B-GFP and -RFP products, researchers can localize histones in living cells and potentially follow these protein complexes during cell division.

Lysosomes-RFP: A new Organelle Lights™ target, Lysosomes-RFP is TagRFP fused to the lamp1 protein (lysosomal associated membrane protein 1). Researchers can now visualize lysosomes, important degradative organelles also involved in autolysis.

Endosomes-GFP: We have fused the bright and photostable Emerald GFP to Rab5a, an early endosomal marker, to produce another new Organelle Lights™ target. Endosomes-GFP will permit localization of the endosomes within the living cell, and can be fixed.

MAP4-GFP: One of our most exciting and visually stunning new Cellular Lights™ targets, MAP4 (microtubule associate protein 4) has been fused to Emerald GFP. This product will enable visualization of the microtubules within a living cell.

Tubulin-GFP and -RFP: Complementary to the Cellular Lights™ MAP4-GFP construct is our Cellular Lights™ Tubulin-GFP (Emerald GFP protein fusion) and -RFP (TagRFP protein fusion) fluorescent proteins. These two products are designed for live-cell imaging of microtubules.

Actin-GFP and -RFP: When added to mammalian cells, Actin-GFP and Actin-RFP Cellular Lights™ products will produce Emerald GFP or TagRFP fused to the N terminus of beta actin.

Null (control) virus: If the potential effects of baculovirus on your cell type are a concern, our new Cellular Lights™ Null virus, which lacks any mammalian genetic elements, provides a new alternative. The Null virus allows you to determine any possible baculovirus-based effects.

Cellular Lights MAP4-GFP Aortic smooth muscle cells (Cascade Biologics, C-007-5C) were transduced with Cellular Lights™ MAP4-GFP and Lysosomes-RFP according to the established Molecular Probes® BacMam protocol. The following day Hoechst staining was performed, and cells were imaged using a 63x objective with GFP, RFP, and DAPI filters.

 

Cellular Lights Tubulin-GFP Human aortic smooth muscle cells (Cascade Biologics, C-007-5C) were transduced with Cellular Lights™ Tubulin-GFP according to the established Molecular Probes® BacMam protocol. The following day Hoechst staining was performed, and cells were imaged using a 63x objective with GFP and DAPI filters. Nocodazole treatment was performed (10 μM), and images obtained every 2.5 min for 15 min. Nocodazole is an antineoplastic agent that interferes with the polymerization of microtubules.


what they offer

  • intracellular landmarks that are well characterized, accurately targeted, safe, and easy to use—no need to make your own constructs and transfection complexes
  • highly efficient transduction of multiple cell types, including primary and stem cells
  • easily "dial in" the right expression level by modulating the dose
  • ideal tools for dynamic live-cell studies; compatible with subsequent fixation immunocytochemical processing
  • simple, safe, and fast application of fluorescent proteins with full rights to use

 

WesternDot™ 625 Western Blot Kits

what they are
The WesternDot™ 625 Western Blot Kits combine the bright fluorescence properties of Qdot® 625 nanocrystals with the high-affinity streptavidin-biotin interaction to allow simple, highly sensitive detection of proteins immobilized on nitrocellulose (NC) or polyvinylidene difluoride (PVDF) membranes. You get the sensitivity of chemiluminescence methods combined with brightness, photostability, flexibility, and greater ease of processing and imaging—no x-ray film, dark rooms, or developing reagents required.

how they work
Incorporating a standard western blotting protocol, the detection step relies on a biotinylated secondary antibody, either goat anti-rabbit (W10132) or goat anti-mouse (W10142), followed by the key component, the Qdot® 625 streptavidin conjugate (Figure 1). The extremely high extinction coefficient of the Qdot® 625 nanocrystal in the UV and blue wavelengths combined with high quantum yield and an orange/red emission (Figure 2) allow for subnanogram sensitivity of protein detection using standard UV or blue-light–based detection systems. The fluorescent signal is compatible with the commonly used modes of fluorescence detection of DNA or protein gels and does not require specialized emission filters. Blots may be imaged wet or dry, and by epi- or transillumination.

what they offer

  • sensitivity equivalent to chemiluminescence methods
  • easy to use—no need to optimize ECL reagents for the best image
  • wet or dry imaging in either epi- or transillumination mode
  • hassle free—signal on the processed blot remains stable for subsequent imaging


Learn more at www.invitrogen.com/qdots.

 


Figure 1
—Workflow diagram for the WesternDot™ 625 Western Blot Kit.

 

 Figure 2—Example of results achieved using the WesternDot™ 625 Western Blot Kit. Total proteins (2-fold dilution series ranging from 10 μg to ~10 ng) from Jurkat cell extract were analyzed on a NuPAGE® Novex® 4–12% Bis-Tris gel and then transferred to an Immobilon™-FL PVDF membrane. Immunodetection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an endogenous “housekeeping” protein in the Jurkat cell extract, was performed with the WesternDot™ 625 Goat Anti-Mouse Western Blot Kit using a mouse monoclonal anti-GAPDH antibody (Invitrogen Cat. no. 39-8600) at 1 μg/ml. The wet membrane was imaged using an Alpha Innotech HD2 instrument with a SYPRO® Red emission filter (620 +/– 40 nm) and excitation at 302 nm transillumination with an exposure time of 300 ms.

 

Create your own bright label for imaging with the Qdot® 625 Antibody Conjugation Kit
 
what it is
Each Qdot® Antibody Conjugation Kit contains sufficient reagents, ultrafiltration columns, separation media, and associated components to perform two separate conjugation reactions. The protocol accompanying the kit details the method for conjugating Qdot® 625 nanocrystals to a 300 µg antibody sample, but the protocol can be adapted for conjugation to polyclonal Fab fragments and other classes of whole antibodies. Labeled antibodies can then be used in immunostaining (see figure) or other experiments requiring biofunctionalized labels (e.g., flow cytometry, ELISA).

 Fixed and permeabilized HeLa cells were labeled with mouse anti–α-tubulin primary antibody and visualized with 20 nM Qdot® 625 goat anti–mouse IgG to show the microtubule network.


how it works

The Qdot® 625 Antibody Conjugation Kit (containing amine-derivatized, PEG-coated Qdot® nanocrystals and the amine–thiol cross linker SMCC) allows you to conjugate your own antibodies to our brightest visible dot with the peak of emission of 625 nm (see figure). The conjugation reaction can be completed in a few hours and is based on the fast and efficient coupling of thiols to reactive maleimide groups, which are present on the nanocrystals after SMCC activation. In addition to antibodies, other thiol-containing molecules can be coupled to the 625 nm nanocrystals using this kit.

 

 The Qdot® 625 nanocrystal is characterized by a broad absorption spectrum and a narrow, symmetrical emission profile.


what it offers

  • the ultimate in fluorescence photostability and brightness
  • ease of use
  • flexibility to conjugate to most antibodies
  • compatibility with other Qdot® colors used with single-excitation sources for multispectral imaging with optimized filter sets


Learn more about Qdot® nanocrystal products. Also, be sure to investigate the BrightLine® QD625-A Filter Set—a new optimized filter set from Semrock, Inc. designed for use with Qdot® 625 nanocrystals.

Product Quantity Cat. no.
Qdot® 625 Antibody Conjugation Kit1 kitA10197

The latest development in IgG antibody labeling—APEX Antibody Labeling Kits

what they are
APEX Antibody Labeling Kits provide a convenient means to directly attach a fluorophore to very small amounts of IgG antibody (10–20 µg).

how they work
These kits use a solid-phase labeling technique that captures the IgG antibody on the resin inside the APEX antibody labeling tip. This enables you to covalently label antibodies that are supplied in solutions containing stabilizing proteins, such as BSA or other contaminants, that can interfere with the amine-reactive labeling reagents used to attach the fluorophore to the antibody. Any contaminants are simply eluted through the tip. After the amine-reactive label is applied, a fluorescent IgG conjugate is ready for use in an imaging or flow cytometry application in as little as 2.5 hr with very little hands-on time.

what they offer

  • labeled antibodies ready for use in 2.5 hr (~15 min hands-on time)
  • covalent attachment of the label
  • labeling compatible with stabilizing proteins such as BSA

 

 Mitochondrial and Golgi complex labeling in HeLa cells. Fixed and permeabilized HeLa cells were treated with multiple mouse primary antibodies directly conjugated with APEX Alexa Fluor® Antibody Labeling Kits. The Golgi apparatus was detected with an anti–golgin-97 mouse monoclonal antibody labeled using the APEX Alexa Fluor® 555 Antibody Labeling Kit (Cat. no. A10470, orange fluorescence). Mitochondria were detected with an anti–OxPhos Complex V inhibitor protein mouse IgG1 monoclonal antibody labeled using the APEX Alexa Fluor® 488 Antibody Labeling Kit (Cat. no. A10468, green fluorescence). Nuclei were stained with blue-fluorescent DAPI (Cat. no. D1306, D3571, D21490).

 

Products Quantity Cat. no.
APEX Alexa Fluor® 488 Antibody Labeling Kit1 kitA10468
APEX Alexa Fluor® 555 Antibody Labeling Kit1 kitA10470
APEX Alexa Fluor® 594 Antibody Labeling Kit1 kitA10474
APEX Alexa Fluor® 647 Antibody Labeling Kit1 kitA10475
APEX Oregon Green® 488 Antibody Labeling Kit1 kitA10476
APEX Pacific Blue™ Antibody Labeling Kit1 kitA10478

 

Dynabeads® FlowComp™ Flexi

what it is
Dynabeads® FlowComp™ Flexi is an easy-to-use, flow-compatible kit for positive isolation of your cell type of choice by magnetic separation. This system is so flexible that almost any cell type can be isolated from any species and from a variety of samples—it depends only on the antibody you use. The isolated cells are ready to be used in any downstream application.

how it works
The Dynabeads® FlowComp™ Flexi technology is simple: Through DSB-X™ biotinylation of antibodies and modified streptavidin on the Dynabeads®, you have the ideal platform to gently obtain bead-free cells in this tube-based cell isolation system. It's as simple as this:

  1. biotinylate your antibody (all reagents supplied) and add to your sample
  2. wash the cells to remove excess antibodies
  3. add FlowComp™ Dynabeads® and incubate
  4. put on a Dynal® magnet and discard supernatant
  5. add FlowComp™ Release Buffer to detach the cells from the Dynabeads®

 

Dynabeads FlowComp

The Dynabeads® FlowComp™ Flexi cell isolation methodology.

what it offers

  • the ability to isolate any cell type from any species when combined with your antibody
  • a bead-free cell sample that is compatible with any downstream analysis including flow cytometry
  • a gentle isolation procedure that doesn't involve columns

 

Products Quantity Cat. no.
Dynabeads® FlowComp™ Flexi, processes 2 x 109 cells1 kit11061D

Anti-tricellulin antibodies

what they are
Invitrogen offers a number of primary antibodies against cell junction proteins, including tricellulin.

how they work
Tight junctions form an important barrier of paracellular transport in epithelial cells, and the sealing of two adjacent cells at bicellular tight junctions is well described. The main structural components of bicellular tight junctions are claudins and occludins—tetra–membrane-spanning proteins. Less is known about the structure of tricellular tight junctions, a point where three adjacent cells are in contact with each other. Tricellulin is the first protein identified that specifically concentrates in tricellular tight junctions. Like claudins and occludins, tricellulin protein has four membrane-spanning domains, and it is highly expressed in epithelium-derived tissues such as small intestine, kidney, and lung.

what they offer

  • good specificity for imaging tricellular junctions
  • validated reagents with multiple applications and species specificities
  • part of a wide-ranging portfolio of antibodies for cell junction research


To browse antibodies by specificity or application, visit www.invitrogen.com/antibodies.

Localization of tricellular junctions using an antibody specific to the carboxy-terminus of tricellulin, in green (Cat. no. 48-8400). Bicellular tight junctions are revealed by the localization of occludin, in red (Cat. no. 33-1500).

Product Quantity Applications* Species reactivity Clonality Cat. no.
Rabbit Anti-Tricellulin (C-term)100 μgWB, ICCHu, Ms, Rt, Cn, Ch, Bv, Eq, MkPolyclonal, ZMD.699 (Rabbit IgG)488400
Rabbit Anti-Tricellulin (N-term)100 μgWB, ICCHu, Ms, RtPolyclonal, ZMD.698 (Rabbit IgG)488300
Mouse Anti-Occludin100 μgWB, E, IFHu, Ms, Rt, CnMonoclonal, OC-3F10 (Mouse IgG1-κ)331500
Mouse Anti-Occludin-FITC100 μgIFHu, Ms, Rt, CnMonoclonal, OC-3F10 (Mouse IgG1-κ)331511
Mouse anti-Occludin-HRP100 μgWB, EHu, Ms, Rt, CnMonoclonal, OC-3F10 (Mouse IgG1-κ)331520
Rabbit Anti-Occludin100 μgWB, E, IP, IF, IHC, ICCHu, Ms, Rt, CnPolyclonal, Z-T22 (Rabbit IgG)711500
Mouse Anti-ZO-1100 μgWB, E, IFHu, CnMonoclonal, ZO1-1A12 (Mouse IgG1-κ)339100
Mouse Anti-ZO-1-FITC100 μgWB, E, IFHu, Ms, Rt, Rb, Ch, Cn, XMonoclonal, ZO1-1A12 (Mouse IgG1-κ)339111
Rabbit Anti-ZO-1100 μgICCHu, Ms, Rt, Cn, GpPolyclonal, Z-R1 (Rabbit IgG)617300
Rabbit Anti-ZO-1 (Mid)100 μgWB, IF, IHC (frozen)Hu, Ms, Rt, CnPolyclonal, ZMD.436 (Rabbit IgG)402200
Rabbit Anti-ZO-1 (N-term)100 μgWB, IF, IHCHu, Ms, Rt, CnPolyclonal, ZMD.437 (Rabbit IgG)402300
*WB = western blot, ICC = immunocytochemistry, IP = immunoprecipitation,
IHC = immunohistochemistry, IF = immunofluorescence, E = ELISA.

 

Apoptosis 3-plex Panelmultiplex detection and quantification of key apoptosis biomarkers

what it is
The immune system is regulated and maintained through apoptosis, a normal process in which cell populations are deleted in response to self-recognition, failure to bind MHC, and cytokine/growth factor withdrawal. To facilitate detection of apoptosis, we have developed a multiplex sandwich immunoassay that permits the simultaneous detection of three important biomarkers: cytochrome c (a protein that normally resides within the intermitochondrial space that is released to the cytosol in response to apoptotic stimuli), cleaved caspase-3 [175/176] (an important reporter for initiator caspase activation), and cleaved poly (ADP-ribose) polymerase (PARP) [214/215] (an important reporter for caspase-3 activation).

how it works
The Invitrogen™ Apoptosis 3-plex Panel is a solid-phase sandwich immunoassay that is designed for use with the Luminex® 100™ or 200™ instrument. Beads of defined spectral properties conjugated to analyte-specific capture antibodies, and samples (including standards of known analyte concentration, control specimens, and unknowns) are pipetted into the wells of a filter-bottom microplate and incubated for 2 hours. During this first incubation, analytes bind to the immobilized capture antibodies. After washing, a detector antibody is added to the mixture for 1 hour. At the end of this incubation, the beads are again washed and then incubated with an RPE conjugate (containing anti-rabbit RPE plus streptavidin RPE) for 30 minutes. During this final incubation, the RPE conjugate binds to the detector antibodies associated with the immune complexes on the beads, forming four-member solid-phase sandwiches. After washing to remove unbound RPE conjugate, the beads are analyzed with the Luminex® 100™ or 200™ instrument. By monitoring the spectral properties of the beads and the amount of associated RPE fluorescence, the concentrations of the three analytes can be determined.

what it offers

  • simultaneous quantitation of three key biomarkers of apoptosis
  • microplate-based format for efficient sample processing
  • Luminex® platform analysis for sensitive, accurate analysis

 

Luminex Assay Workflow

Schematic of the Invitrogen™ multiplex Luminex® assay methodology.

 

Products Quantity Cat. no.
Apoptosis 3-plex Panel1 kitLHO0007

 

Click-iT® EdU Imaging Kits and HCS Assay Kits

what it is
The Click-iT® EdU assay accurately measures proliferating cells (cells in S-phase) via the active uptake of the nucleoside analog EdU (5-ethynyl-2′-deoxyuridine) and eliminates the need for long incubations or harsh DNA denaturation and permeabilization procedures required by BrdU assays.

how it works
Both the Click-iT® EdU and BrdU assays follow similar workflows. Cells or animals are given the nucleoside analog. Following fixation and permeabilization, the incorporated nucleoside is detected (see figure). Where EdU and BrdU methods differ is in their simplicity of detection; detection of EdU is based on a click reaction—a copper catalyzed covalent reaction between an azide and an alkyne. The small size of the dye azide allows for efficient detection of the incorporated EdU under mild conditions. Standard aldehyde-based fixation and detergent permeabilization are sufficient for the Click-iT® detection reagent to gain access to the DNA. This is in contrast to the BrdU assays that require DNA denaturation (using HCl, heat, or DNAse) to expose the BrdU so that it may be detected with an anti-BrdU antibody which can require several hours to overnight incubation.

Proliferating cells labeled in-vivo Proliferating cells labeled in vivo with the Click-iT® EdU system. EdU from the Click-iT® EdU Alexa Fluor® 488 Imaging Kit (C10083) was administered intraperitoneally to mice 2 hours prior to sacrifice. Intestinal tissues were formalin-fixed and paraffin-embedded. EdU was labeled using the Click-iT® reaction (~250 μl of reaction cocktail per slide). The tissue sections were washed and mounted in a medium containing DAPI. EdU-positive cells are labeled green, nuclei are stained with blue-fluorescent DAPI, and red autofluorescence was enhanced for image contrast. Image contributed by Sima Zacharek, Children's Hospital Boston.


what it offers
DNA denaturation protocols using HCl and methanol can destroy cell morphology and antigen recognition sites. Although milder than HCl, DNase denaturation can destroy the ability to perform cell cycle analysis. Finding the balance between sufficient DNA denaturation and sufficient dsDNA amounts (required for cell cycle dye binding) is difficult. With Click-iT® EdU, content-rich results are now truly easy to obtain. You can not only accurately measure proliferation of individual cells by flow cytometry, microscopy, or high-throughput imaging (HCS), but also simultaneously detect cell cycle, intracellular, and extracellular targets in significantly less time than the BrdU method.

  • accurate, consistent performance—no denaturation steps or harsh treatments required
  • simple method—works the first time, every time, in less time
  • content-rich results—better preservation of sample morphology, antigens, and dsDNA integrity

 

Products Quantity Cat. no.
Click-iT® EdU Alexa Fluor® 647 High-Throughput Imaging (HCS) Assay Kit10-plate sizeC10081
Click-iT® EdU Alexa Fluor® 594 High-Throughput Imaging (HCS) Assay Kit10-plate sizeC10082
Click-iT® EdU Alexa Fluor® 488 Imaging Kit50 coverslipsC10083
Click-iT® EdU Alexa Fluor® 594 Imaging Kit50 coverslipsC10084
Click-iT® EdU Alexa Fluor® 647 Imaging Kit50 coverslipsC10085


Visit www.invitrogen.com/edu for more information about this exciting new detection technology and a complete list of available products.

A chemical method for fast and sensitive detection of DNA synthesis in vivo.
Salic, A. and Mitchison, T.J. (2008) Proc Natl Acad Sci USA 105:2415.

Can cell proliferation assays tell us more? Accurate assessment of the degree of DNA synthesis in proliferating cells  provides important information in a wide range of pharmacological and regulatory studies. While the two methods currently used for measuring cell proliferation have given researchers useful insights, each method has its limitations. [3H]-thymidine labeling is laborious and slow, offers poor resolution, and suffers from all the potential health and waste-disposal concerns inherent in radioligand methodology. BrdU labeling is faster and more sensitive, and offers better resolution; however, the success of this approach necessitates extensive sample denaturation that can be difficult to reproduce and can significantly degrade sample structure. In the present study, Salic and Mitchison demonstrate the advantages of "click" chemistry—incorporation of 5-ethynyl-2'-deoxyuridine (EdU) followed by labeling with a fluorescent azide derivative—as an alternative to existing cell proliferation assays. Their data show that EdU is extensively incorporated into the DNA of proliferating NIH 3T3, HeLa, and Xenopus cells.  Subsequent visualization of the fixed cells with Alexa Fluor® 488 or Alexa Fluor® 594 azide derivatives revealed efficient and highly reproducible labeling regardless of the Alexa Fluor® dye used. Comparison with BrdU staining carried out on the same cells revealed excellent colocalization of the signal from the two methods; however, the click methodology yielded substantially more intense fluorescence, with excellent preservation of sample structure. The authors further demonstrate that the click methodology can be used to visualize proliferation in unfixed cells, large tissue/organ explants, and even in live animals, greatly expanding the scope and utility of this already promising approach.


HaCaT cells (an immortalized human keratinocyte cell line) were seeded in an evaporation-free dish and allowed to grow to 80% confluency before being transfected with a mitochondria-targeted eGFP construct. Twenty-four hours after transfection, the cells were incubated for 15 min in a solution containing 1 μM Hoechst 33342 (H21492) and then for 5 min in a fresh solution containing 8 μg/ml CellMask™ Deep Red stain ((C10046); staining took place at 37°C in the presence of 5% CO2). The final staining solution was removed and the sample was washed twice with DMEM (including 10% FBS). With the temperature maintained at a constant 37°C, a stack through the cell was imaged with a Zeiss AxioCam MRm camera and Axio Observer HS microscope fitted with a 100x oil alpha Plan-Apochromat objective and the BFP/GFP/HcRed filter set with triple emission/beam splitter and single excitation from Zeiss (62HE). The image stack was deconvolved with the Zeiss AxioVision 3D Deconvolution module. The point spread function was acquired using a 200 nm TetraSpeck™ fluorescent bead (T7280) in water at 37°C. Metaphase chromosomes (pseudocolored blue, Hoechst 33342), plasma membrane (pseudocolored red, CellMask™ Deep Red stain), and mitochondria (pseudocolored green, eGFP) are all clearly visible. This image was one of a series of time-lapse images captured during a study aimed at tracking mitochondrial movements. The accumulated tracking data will be used to improve computer-based theoretical cell models being developed in cooperation with a group of theoretical physicists at the University of Saarland. Image submitted by Christian Junker, University of Saarland, Department of Biophysics, Homburg, Germany.
Integrin Pathway Signaling pathways
Empower your research today with Invitrogen’s comprehensive portfolio of products and services for investigating cell signaling pathways—including high-quality reagents for basic research and assay development, validated biochemical and cell-based assays, and world-class profiling and screening services. See our portfolio of pathways at www.invitrogen.com/cellsignaling.

Choose the right dead-cell stain for flow cytometry
Accurate interpretation of data obtained by flow cytometry relies on the correct identification and negation of the various nonspecific signals arising from dead cells in the population. Flow cytometrists at Invitrogen recently conducted a survey of 25 membrane stains that have been used to identify dead cells based on membrane integrity. They tested classic membrane-impermeant nucleic acid dyes, monomeric cyanine dyes, annexin V dyes, and amine-reactive dyes. All dyes were tested with a mixture of live and heat-killed cells, before and after formaldehyde fixation, with aged cultures, and with apoptotic cells. Their results demonstrate the utility of optimizing the concentration of dead-cell stain for each experiment and the importance of understanding how a particular dye performs in the intended application.

View the Invitrogen 2008 ISAC poster here.

Luminex Instrument SystemThe Total Luminex® 200™ System
Invitrogen has pioneered one of the most comprehensive analyte panels in the industry, and now offers the complete solution by introducing the Luminex® 200™ detection system. Experience the power of Luminex® multiplex analysis all from Invitrogen. The Total Luminex® 200™ System is a compact analyzer that performs up to 100 assays simultaneously in a single well of a microtiter plate. This system is a flexible analyzer based on the principles of flow cytometry, which integrates key xMAP® detection components such as lasers, optics, advanced fluidics, and high-speed digital signal processors. Utilizing the xPONENT® software of the xMAP® technology operating system, the Luminex® 200™ System offers optional technical controls for 21 CFR Part 11 compliance to provide an electronic audit trail.

For more information, visit www.invitrogen.com/luminexinstrument.

 



Molecular Probes® The Handbook

©2009 Molecular Probes, Inc. Visit our website for a complete listing of legal notices and trademark attributions. Feel free to distribute ProbesOnline to friends and colleagues, but please keep this copyright statement intact.